Ribosomal protein S1 influences trans-translation in vitro and in vivo
نویسندگان
چکیده
When the bacterial ribosome stalls on a truncated mRNA, transfer-messenger RNA (tmRNA) acts initially as a transfer RNA (tRNA) and then as a messenger RNA (mRNA) to rescue the ribosome and add a peptide tag to the nascent polypeptide that targets it for degradation. Ribosomal protein S1 binds tmRNA but its functional role in this process has remained elusive. In this report, we demonstrate that, in vitro, S1 is dispensable for the tRNA-like role of tmRNA but is essential for its mRNA function. Increasing or decreasing the amount of protein S1 in vivo reduces the overall amount of trans-translated proteins. Also, a truncated S1 protein impaired for ribosome binding can still trigger protein tagging, suggesting that S1 interacts with tmRNA outside the ribosome to keep it in an active state. Overall, these results demonstrate that S1 has a role in tmRNA-mediated tagging that is distinct from its role during canonical translation.
منابع مشابه
In vitro trans-translation of Thermus thermophilus: ribosomal protein S1 is not required for the early stage of trans-translation.
Transfer-messenger RNA (tmRNA) plays a dual role as a tRNA and an mRNA in trans-translation, during which the ribosome replaces mRNA with tmRNA encoding the tag-peptide. These processes have been suggested to involve several tmRNA-binding proteins, including SmpB and ribosomal protein S1. To investigate the molecular mechanism of trans-translation, we developed in vitro systems using purified r...
متن کاملSmall protein B interacts with the large and the small subunits of a stalled ribosome during trans-translation
During trans-translation, stalled bacterial ribosomes are rescued by small protein B (SmpB) and by transfer-messenger RNA (tmRNA). Stalled ribosomes switch translation from the defective messages to a short internal reading frame on tmRNA that tags the nascent peptide chain for degradation and recycles the ribosomes. We present evidences that SmpB binds the large and small ribosomal subunits in...
متن کاملRibosomal protein S1 of Escherichia coli is the effector for the regulation of its own synthesis.
To facilitate the study of the regulation of the rpsA gene, a translational fusion between the rpsA gene and the lacZ gene was constructed. Synthesis of the fusion protein was repressed about 10-fold when rpsA was supplied in trans on a multicopy plasmid. This repression is similar to the post-transcriptional regulation previously found for the wild type rpsA gene. Addition of purified protein ...
متن کاملEscherichia coli Ribosomal Protein S1 Unfolds Structured mRNAs Onto the Ribosome for Active Translation Initiation
Regulation of translation initiation is well appropriate to adapt cell growth in response to stress and environmental changes. Many bacterial mRNAs adopt structures in their 5' untranslated regions that modulate the accessibility of the 30S ribosomal subunit. Structured mRNAs interact with the 30S in a two-step process where the docking of a folded mRNA precedes an accommodation step. Here, we ...
متن کاملImmunogencity of HSA-L7/L12 (Brucella abortus Ribosomal Protein) in an Animal Model
Background: The immunogenic Brucella abortus ribosomal protein L7/L12 is a promising candidate antigen for the development of subunit vaccines against brucellosis. Objective: This study was aimed to evaluate the protection of recombinant Human Serum Albumin (HAS)-L7/L12 fusion protein in Balb/c mice. Methods: The amplified L7/L12 gene was cloned in pYHSA5 vector, pYHSA5-L7/L12 construct was tra...
متن کامل